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1. Introduction

In this paper we consider nonlinear multiplicative problems having a polyhedral
feasible region and with the objective function given by the product of a strictly
convex quadratic function and the p−th power of a linear one, where p ∈ R,
p �= 0. Note that the considered problems are convex multiplicative ones for
p /∈ [0, 1], while for p ∈]0, 1] the objective function is the product of a strictly
convex function and a concave one. Note also that this class of programs covers
both quadratic multiplicative problems (case p > 0) and quadratic fractional ones
(case p < 0).

The problems considered in this paper have been useful for applicative prob-
lems. For example, it is known that quadratic fractional programs have been used
in application models,� such as risk theory, portfolio selection and location models
(see for example [1, 2, 17, 25], see also [20] for other references on applications of
fractional programs).

For this reason, quadratic fractional and generalized fractional problems have
been studied in the literature from both a theoretical and an algorithmic point of
view (see for all [1, 2, 3, 4, 5, 9, 11, 12, 18, 19, 20, 21]) and many results and
� Usually, the quadratic function represents the uncertainty by means of the use of a covariance

matrix, while the linear function provides the expected revenues or costs.
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solution algorithms appeared recently for multiplicative programs (see for example
[12, 13, 14, 15, 16, 22, 23, 24]).

The aim of this paper is to propose a unifying approach to solve the considered
class of quadratic multiplicative programs for all the possible values of the para-
meter p ∈ R, p �= 0. This will be done by means of the so called “optimal level
solutions” method, used in the literature to solve various classes of problems (see
for all [4, 6, 7, 8, 10, 12, 22]). It is worth recalling that this parametrical approach
determines an optimal solution (or the infimum value) by means of simplex-like
computations and without the use of any branch-and-bound iterations.

In Section 2 we define the problem and we prove that the objective function
is strictly pseudoconvex in subsets of the feasible region (note that the generalized
convexity of these multiplicative functions has been studied in the literature for par-
ticular values of p and only for the strict quasiconvexity). In Section 3 we describe
the “optimal level solutions” method and we state some preliminary results needed
for the solution algorithm. In Section 4 the study of the problem is deepened on and
several stopping criteria are stated with the aim to improve the solution algorithm.
In Section 5 we finally propose a solution algorithm that solves the considered
problems even when the feasible region is unbounded.

2. Definitions and Preliminary Results

In this paper we consider the following class of nonlinear multiplicative problems:

P :
{

inf f (x) = (
1
2x
TQx + qT x + q0

) (
dT x + d0

)p
x ∈ X = {x ∈ R

n : Ax � b}

where A ∈ R
m×n, q, d ∈ R

n, b ∈ R
m, p, q0, d0 ∈ R, p �= 0, Q ∈ R

n×n is
symmetric and positive definite and dT x + d0 > 0 ∀x ∈ X.

For the sake of convenience, we define also the following subsets of the feasible
region X:

Xpos = {x ∈ X : f (x) � 0} =
{
x ∈ X : 1

2
xTQx + qT x + q0 � 0

}

Xneg = {x ∈ X : f (x) � 0} =
{
x ∈ X : 1

2
xTQx + qT x + q0 � 0

}

and the following value called the minimum feasible level:

ξmin = min
x∈X

{
dT x + d0

}
Note that Xneg is a compact set and that ξmin > 0 exists since X is closed and

the linear function dT x + d0 is positive for all x ∈ X. Since dT x + d0 > 0 ∀x ∈ X
problem P can be classified as follows:
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− for p < 0 or p � 1 it is a convex multiplicative one,
− for 0 < p � 1 it is a convex-concave multiplicative one.

In particular, if p < 0 then f is a fractional function, hence:

− for −1 � p < 0 P is a convex-concave fractional problem,
− for p � −1 problem P is a convex fractional one.

The generalized convexity of the objective function is an important property
for problem P , both from the theoretical and the algorithmic point of view. This
property implies that all the local minimum points are also global ones, and hence
can be used as an efficient stopping criterion in solution algorithms.

Problem P is not a quasiconvex program in general; nevertheless it is possible to
state some generalized convexity property of the objective function on the subsets
Xpos and Xneg of the feasible region.

THEOREM 2.1. Consider problem P . The following properties hold:
(i) if p = −1 then f is strictly pseudoconvex in X;

(ii) if p < −1 or p > 0 then f is strictly pseudoconvex in every convex subset of
Xneg;

(iii) if −1 < p < 0 then f is strictly pseudoconvex in every convex subset of Xpos .

Proof. Let us denote the quadratic factor of f with h(x) = ( 1
2x
TQx+qT x+q0)

and let us define on the set X the function g(x) = (dT x + d0)
−p, so that f (x) =

h(x)[g(x)]−1. First notice that g is convex for p � −1 or p > 0 and it is concave
for −1 � p < 0 since its hessian matrix is

Hg(x) = p(p + 1)

(dT x + d0)p+2
ddT

Function f is strictly pseudoconvex in X if ∀x, y ∈ X, x �= y, it is:

f (y) � f (x) ⇒ ∇f (x)T (y − x) < 0

Assume f (y) � f (x); this condition can be rewritten as

h(y)[g(y)]−1 � h(x)[g(x)]−1

that is, since g(x) > 0 ∀x ∈ X:

h(y) � h(x)g(y)
g(x)

SinceQ is positive definite h(x) is a strictly convex function, hence:

∇h(x)T (y − x) < h(y)− h(x) � h(x)
(
g(y)

g(x)
− 1

)
= f (x)[g(y) − g(x)]
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It results also:

∇f (x) = [g(x)]−1∇h(x)− h(x)[g(x)]−2∇g(x)
so that, since g(x) > 0 ∀x ∈ X, we obtain:

∇f (x)T (y − x) = [g(x)]−1∇h(x)T (y − x)− h(x)[g(x)]−2∇g(x)T (y − x)
< [g(x)]−1f (x)[g(y)− g(x)] − f (x)[g(x)]−1∇g(x)T (y − x)
= f (x)[g(x)]−1[g(y)− g(x)− ∇g(x)T (y − x)]

If p = −1 function g is affine, hence g(y) − g(x) − ∇g(x)T (y − x) = 0 and
∇f (x)T (y − x) < 0, so that f is strictly pseudoconvex in X.

If p < −1 or p > 0 function g is convex, hence g(y)−g(x)−∇g(x)T (y−x) �
0; consequently for f (x) � 0 it is ∇f (x)T (y − x) < 0, that is to say that function
f is strictly pseudoconvex in Xneg .

If −1 < p < 0 function g is concave, hence g(y)−g(x)−∇g(x)T (y−x) � 0
and for f (x) � 0 it results ∇f (x)T (y − x) < 0, in other words function f is
strictly pseudoconvex over Xpos. �

Note that Theorem 2.1 extends the results given in [4, 7, 20] which prove only
the strict quasiconvexity of the function for the particular cases p = −1 and p =
−2.

3. Optimal Level Solutions Approach

In this section we show how problem P can be solved by means of the optimal level
solution approach [6, 8, 10, 12, 20], and we state some local optimality conditions
useful to determine the solution algorithm.

Let ξ ∈ R be a real parameter, if we add to problem P the constraint dT x = ξ
we have the following parametric strictly convex quadratic problem:

Pξ :

inf

(
1

2
xTQx + qT x + q0

)
ξp

x ∈ Xξ = {x ∈ R
n : Ax � b, dT x + d0 = ξ }

The parameter ξ is said to be a feasible level if the set Xξ is nonempty. An optimal
solution of problem Pξ is called an optimal level solution. For any given ξ ∈ R,
the optimal solution for problem Pξ can be computed by means of any solution
algorithm for strictly convex quadratic problems.

For the sake of completeness, let us now briefly recall the optimal level solution
approach (see for example [12]). It is trivial that the optimal solution of problem P
is also an optimal level solution and that, in particular, it is the optimal level solu-
tion with the smallest value; the idea of this approach is then to scan all the feasible
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levels, studying the corresponding optimal level solutions, until the minimizer of
the problem is reached or a feasible halfline carrying f (x) down to its infimum
value is found.

Starting from an incumbent optimal level solution, this can be done by means
of a sensitivity analysis on the parameter ξ , which allows us to move in the various
steps through several optimal level solutions until the optimal solution is found.

Let us now study some optimality conditions useful to detect whether or not an
optimal level solution is a local minimizer of problem P .

Let x′ be an optimal solution of problem Pξ ′ and let Nx = k be the equations
of the constraints binding at x′. We can always select a subset of these constraints,
making a submatrix M of N and correspondingly a subvector h of k, such that
the rows of M and the vector d are linearly independent. As Pξ ′ is convex, x′ is
an optimal solution of Pξ ′ if and only if the following Kuhn-Tucker conditions are
verified:


Qx −MTµ −dλ = −q
Mx = h
dT x = ξ ′ − d0

(1)

where µ is the vector of the Lagrange multipliers associated to the constraints
Mx = h and λ is the Lagrange multiplier of the parametric constraint dT x =
ξ ′ − d0.

The previous conditions can be rewritten in the following matrix form:
 Q −MT −d
M 0 0
dT 0 0





 xµ
λ


 =


 −q

h

ξ ′ − d0


 (2)

where the matrix

S =

 Q −MT −d
M 0 0
dT 0 0




is nonsingular since Q is positive definite and the rows of M and d are linearly
independent. As a consequence, the solution of (1) is unique and is given by:

 x′
µ′
λ′


 = S−1


 −q

h

ξ ′ − d0




Note also that, since x′ is an optimal solution, we have µ′ � 0.
Let us now carry on a sensitivity analysis on ξ ′ by means of a shifting value

θ ∈ R; the unique solution of the Kuhn-Tucker system:

Qx −MTµ −dλ = −q
Mx = h
dT x = ξ ′ + θ − d0
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is given by:
 x′(θ)
µ′(θ)
λ′(θ)


 = S−1


 −q

h

ξ ′ + θ − d0


 =


 x′
µ′
λ′


 + θ


 %x%µ
%λ




where [%x,%µ,%λ]T = S−1[0, 0, 1]T ; in other words (%x,%µ,%λ) is the unique
solution of the linear system


Qx −MTµ −dλ = 0
Mx = 0
dT x = 1

so that Q%x = MT%µ + d%λ, M%x = 0, dT%x = 1 and %λ = %Tx Q%x . Note
also that, since dT%x = 1 and Q is positive definite, it is:

%x �= 0 and %λ > 0.

Let us now introduce the following sets:

− FR = {θ : x′(θ) ∈ X} (feasibility range)
− OR = {θ : µ′(θ) � 0} (optimality range)

Clearly, x′(θ) is an optimal level solution for θ ∈ FR ∩OR.
Set z′ = 1

2x
′TQx′ + qT x′ + q0 and

z(θ) =
(

1

2
x′(θ)TQx′(θ)+ qT x′(θ)+ q0

)(
ξ ′ + θ)p

=
(

1

2
%λθ

2 + λ′θ + z′
) (
ξ ′ + θ)p .

The first derivative of z(θ) is

dz

dθ
(θ) = (

ξ ′ + θ)p−1
[

1

2
%λ(p + 2)θ2 + ((p + 1)λ′ +%λξ ′)θ + (pz′ + λ′ξ ′)

]

and hence:

− If pz′+λ′ξ ′ > 0 [pz′+λ′ξ ′ < 0] then z(θ) is locally increasing [decreasing]
at θ = 0.

Level optimality can be helpful also in studying local optimality, since a min-
imum point in a segment of optimal level solutions is a local minimizer of the
problem. This fundamental property allows to prove the following conditions.

THEOREM 3.1. Let x′ be an optimal solution of problem Pξ ′ . The following
properties hold:
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(i) if pz′ + λ′ξ ′ = 0 and (p + 1)λ′ + %λξ ′ > 0 then x′ is a local minimizer for
problem P ,

(ii) if p = −2, %λξ ′ > λ′ and θ ′ = 2z′−λ′ξ ′
%λξ ′−λ′ ∈ FR ∩OR then x′(θ ′) = x′ + θ ′%x is

a local minimizer for problem P .
Suppose now that p �= −2 and that the equation dz

dθ
(θ) = 0 has two different roots

θ1 < θ2. The following further properties hold:
(iii) if p > −2 and θ2 ∈ FR ∩OR then x′(θ2) = x′ + θ2%x is a local minimizer for

problem P ,
(iv) if p < −2 and θ1 ∈ FR ∩OR then x′(θ1) = x′ + θ1%x is a local minimizer for

problem P ,

Proof. The result follows just analyzing the local positivity and negativity of the
derivative dz

dθ
(θ). �

Let us now focus on conditions regarding to vertices of the feasible polyhedron.
We already pointed out, introducing the Kuhn-Tucker conditions (1), that for any
vertex x′ ∈ X at least n constraints of X are binding as well as the parametric
constraint dT x = ξ ′ and thus x′ is a degenerate basic solution. For this reason
µ′(θ), λ′(θ), z(θ), FR and OR, actually depends on the chosen basis. Note that,
since all the feasible levels must be examined in the algorithm, the used basis must
contain the parametric constraint dT x = ξ ′.

To point out the described behavior, in the next results we will refer to the
selected basis β using the notations µ′

β(θ), λ
′
β(θ) and so on. The next theorem

follows directly from the formulae of z(θ) and its first derivative.

THEOREM 3.2. Let x′ be a vertex of X and suppose it is an optimal level solu-
tions. If one of the following properties holds:

(i) there are two different bases β1 and β2 such that pz′ + λ′
β1
ξ ′ > 0, sup{FRβ1

∩
ORβ1

} > 0, pz′ + λ′
β2
ξ ′ < 0 and inf{FRβ2

∩ORβ2
} < 0,

(ii) sup{FRβ ∩ORβ } = 0 for any basis β such that pz′ + λ′
βξ

′ < 0 and inf{FRβ ∩
ORβ } = 0 for any basis β such that pz′ + λ′

βξ
′ > 0,

then x′ is a local minimum for problem P .

4. Stopping Criteria

Since Xneg is a compact set and f is continuous, it follows that Xneg �= ∅ implies
arg minx∈X f (x) = arg minx∈Xneg f (x) �= ∅. For this reason, it is useful to determ-
ine conditions regarding the presence or absence of feasible points with nonpositive
image.

DEFINITION 4.1. Consider problem P and its quadratic factor:(
1

2
xTQx + qT x + q0

)
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From now on we denote with:
(i) xu = −Q−1q (unconstrained minimum of the quadratic factor)

(ii) ξu = d0 − dTQ−1q = dT xu + d0 (level corresponding to xu)
(iii) qu = q0 − 1

2q
TQ−1q = 1

2x
T
u Qxu+ qT xu+ q0 (value of the quadratic factor at

xu)
(iv) δ = 2dTQ−1d (δ > 0 since Q positive definite implies Q−1 positive definite)

LEMMA 4.1. The following quadratic problem{
min 1

2x
TQx + qT x + q0

dT x + d0 = ξ
attains the unconstrained minimum at

x(ξ) = −Q−1

(
q − 2

ξ − ξu
δ
d

)

with minimum value Q(ξ) = qu + (ξ−ξu)2
δ

.
Proof. The minimum point of the problem verifies the following necessary and

sufficient optimality condition:{
Qx + q = λd
dT x + d0 = ξ

Since Q is positive definite it is also non singular, hence x(ξ) = −Q−1(q − λd).
By means of simple calculations, we then have:

λ = 2
ξ − ξu
δ

x(ξ) = −Q−1

(
q − 2

ξ − ξu
δ
d

)

Q(ξ) = 1

2
x(ξ)T Qx(ξ)+ qT x(ξ)+ q0 =

= 1

2
λ2dTQ−1d + qu = qu + (ξ − ξu)2

δ
. �

By means of Lemma 4.1 it possible to state the following conditions related to
the positivity of the objective function f .

THEOREM 4.1. Consider problem P . The following properties hold:
(i) if qu > 0 then f (x) > 0 ∀x ∈ X,

(ii) if qu � 0 and ξu + √−δqu > 0 then

f (x) � 0 ⇒ ξu − √−δqu � dT x + d0 � ξu + √−δqu,
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(iii) if qu � 0 and ξu + √−δqu < ξmin then f (x) > 0 ∀x ∈ X.
Proof. i) The result follows trivially since dT x + d0 > 0 ∀x ∈ X and qu is the

unconstrained minimum value of the quadratic factor.
ii) Let x ∈ X and ξ > 0 such that dT x + d0 = ξ . Condition f (x) � 0 implies

Q(ξ) � 0 and hence (ξ − ξu)2 � −δqu, that is to say that ξu − √−δqu � ξ �
ξu + √−δqu.

iii) Follows directly from ii) since dT x + d0 > 0 ∀x ∈ X. �
REMARK 4.1. Theorem 4.1 suggests a smart procedure to study problem P in
the case

qu � 0 and ξu + √−δqu � ξmin

Split the feasible region X in the following subsets:

X1 = X ∩
{
x ∈ R

n : ξu − √−δqu � dT x + d0 � ξu + √−δqu
}

X2 = X ∩
{
x ∈ R

n : ξu − √−δqu > dT x + d0

}
X3 = X ∩

{
x ∈ R

n : dT x + d0 > ξu + √−δqu
}

so that X = X1 ∪ X2 ∪ X3. First solve the problem infx∈X1 f (x); if the minimum
value computed is nonpositive, then it is also the minimum value of problem P ,
otherwise solve the two other problems infx∈X2 f (x) and infx∈X3 f (x) and compare
the obtained results, taking into account that for −1 � p � 0 function f is strictly
pseudo-convex on X2 and X3 and hence every local minimizer is a global one.

We conclude this section studying conditions which could be used as stop-
ping criteria in algorithms solving problem P . With this aim, let us consider the
following program associated to P :{

min f (x)

dT x + d0 = ξ > 0

The minimum point is attained again at x(ξ) and the minimum values, associated
to the levels ξ > 0, are given by:

φ(ξ) = ξ
p

δ

[
(ξ − ξu)2 + δqu

] = ξ
p+2

δ

[(
1 − ξu

ξ

)2

+ δqu
ξ 2

]

By means of simple calculations, we obtain the corresponding first derivative:

φ′(ξ) = ξ
p−1

δ

[
(p + 2)ξ 2 − 2ξu(p + 1)ξ + p(ξ 2

u + δqu)
]
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which allow us to study the behavior of the unconstrained minimum level values.
Note also that it results:

lim
ξ→+∞φ(ξ) =




+∞ if p > −2
1
δ

if p = −2
0 if p < −2

Some optimality conditions, which could be used as stopping criteria in solution
algorithms, can be provided when φ(ξ) is definitely increasing.

THEOREM 4.2. Consider problem P , let ξmin > 0 be the minimum feasible level
and let x∗ ∈ X and ξ ∗ � ξmin be such that f (x∗) � φ(ξ ∗). If one of the following
conditions holds:

(i) p > −2 and ξ 2
u � p(p + 2)δqu,

(ii) p > −2, ξ 2
u > p(p + 2)δqu and ξ ∗ � ξu + −ξu+

√
ξ2
u−p(p+2)δqu
p+2

(iii) p = −2, ξu > 0 and ξ ∗ � ξ2
u+δqu
ξu

,
(iv) p = −2, ξu = 0 and qu < 0,
then f (x∗) � f (x) ∀x ∈ X such that dT x + d0 � ξ ∗.

Proof. We prove the result showing that these conditions imply the increaseness
of φ(ξ), function of the unconstrained minimum values associated to a feasible
level ξ , so that

f (x∗) � φ(ξ ∗) � φ(ξ) � f (x) ∀x ∈ X such that dT x + d0 = ξ � ξ ∗

(i), (ii) Let p > −2. Since ξ > 0 the derivative φ′(ξ) is nonnegative when

(p + 2)ξ 2 − 2ξu(p + 1)ξ + p(ξ 2
u + δqu) � 0

Solving the second order inequality we have that for

%

4
= ξ 2

u − p(p + 2)δqu � 0

function φ(ξ) is increasing ∀ξ > 0, while for %4 > 0 it is definitely increasing for

ξ � ξu + −ξu + √
ξ 2
u − p(p + 2)δqu
p + 2

.

(iii), (iv) Let p = −2. It results:

φ(ξ) = 1

δ

[(
1 − ξu

ξ

)2

+ δqu
ξ 2

]

φ′(ξ) = 2
ξ−3

δ

[
ξuξ − (ξ 2

u + δqu)
]
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hence if ξu > 0 function φ(ξ) is increasing for

ξ � ξ
2
u + δqu
ξu

,

while if ξu = 0 it is φ′(ξ) > 0 just when qu < 0. �
The previous result allows us to prove that only if p � −2 problem P may have

no minimum points.

COROLLARY 4.1. Consider problem P . The following property holds:(
p > −2 or Xneg �= ∅) ⇒ arg min

x∈X
f (x) �= ∅

Proof. If Xneg �= ∅ the result follows since f is continuous and Xneg is a
compact set. Assume now p > −2 and let x∗ = arg min{Pξmin} ∈ X; by means
of some computations we can determine a level ξ ∗ such that ξ ∗ � ξmin, φ(ξ ∗) �
f (x∗) = min{Pξmin} and ξ ∗ � ξu+ −ξu+

√|ξ2
u−p(p+2)δqu|
p+2 . For Theorem 4.2 problem

P is equivalent to the following one:{
inf f (x) = (

1
2x
TQx + qT x + q0

) (
dT x + d0

)p
x ∈ Y = X ∩ {x ∈ R

n : ξmin � dT x + d0 � ξ ∗} (3)

Let {xk} ⊂ Y be a sequence such that f (xk)→ infx∈X f (x) and define the corres-
ponding sequence {yk} ⊂ [ξmin, ξ ∗] such that yk = dT xk + d0. Since [ξmin, ξ ∗] is a
compact set we can extract a subsequence {xj } ⊂ {xk} such that

f (xj )→ inf
x∈X f (x)

and

dT xj + d0 → ξ ∈ [ξmin, ξ ∗].
Since f is continuous, arg min{Pξ } �= ∅ and dT xj + d0 → ξ it is:

inf
x∈X
f (x) � min{Pξ } � lim

j→+∞
f (xj ) = inf

x∈X
f (x)

and hence arg minx∈X f (x) = arg min{Pξ }.

5. A Solution Algorithm

In order to find the infimum/minimum of P it would be necessary to solve problem
Pξ for all the feasible levels. In this section we will show that this can be done by
means of a finite number of iterations, using the results of the previous sections.
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5.1. MAIN STEPS

The algorithm starts from the minimum level ξmin and then scans all the greater
ones looking for the optimal solution.

Algorithm Structure
(0) Compute, by means of two linear programs, the values:

ξmin := min
x∈X d

T x + d0 , ξmax := sup
x∈X
dT x + d0

and determine ξu, qu and δ.
(1) Let ξ ′ := ξmin be the starting feasible level; x′ := arg min{Pξ ′ }; UB := f (x′);
x∗ := x′; unbounded:= f alse; stop:= f alse;

(2) While not stop do
(2a) With respect to ξ ′ and x′ determine µ′, λ′, %x , %µ, %λ, supFR , supOR;

θm := min{supFR, supOR};
(2b) Determine the next level ξ̃ > ξ ′, the best optimal level solution x for the

levels ξ ∈ [ξ ′, ξ̃ ], and test the unboundedness;
(2c) If unbounded= true then stop:= true

else begin

- If f (x) < UB then x∗ := x and UB := f (x);
- If one of the following conditions holds:

* ξ̃ � ξmax
* UB � 0 and ξ̃ > ξu + √−δqu
* UB � φ(ξ̃ ) and p > −2 and

not


ξ2
u > p(p + 2)δqu and ξ̃ < ξu + −ξu +

√
ξ2
u − p(p + 2)δqu

p + 2




* UB � φ(ξ̃ ) and p = −2 and[(
ξu > 0 and ξ̃ � ξ

2
u + δqu
ξu

)
or (ξu = 0 and qu < 0)

]

then stop:= true
else begin

- γ := ξ̃ − ξ ′; ξ ′ := ξ̃ ;
- if γ > supFR then x′ := arg min{Pξ ′ } else x′ := x′ + γ%x;

end;

end;
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(3) If unbounded= true then infx∈X f (x) = Inf _V al else x∗ is the optimal
solution for problem P . �

Note that in all the iterations the variable UB gives an upper bound for the optimal
value with respect to the levels ξ > ξ ′, while x∗ is the best optimal level solution
with respect to the levels ξ � ξ ′. Note also that in 2c) the various stopping criteria
studied in the previous sections have been used.

5.2. MOVING STEPS

It remains to show how to implement step 2b) in the previous procedure. With this
aim, first note that for all θ ∈ OR, the value z(θ) is a lower bound for the parametric
problem Pξ ′+θ ; in fact if θ ∈ FR then x′(θ) is an optimal level solution, otherwise
(if θ /∈ FR) x′(θ) is unfeasible for Pξ ′+θ but is an optimal solution of a problem
with the same objective function as Pξ ′+θ and a feasible region containing Xξ ′+θ .
Recall finally that the derivative of z(θ) is

dz

dθ
(θ)=(

ξ ′+θ)p−1
[

1

2
%λ(p+2)θ2+((p+1)λ′+%λξ ′)θ+(pz′+λ′ξ ′)

]

Case A: p > −2
(A1) Compute % := ((p + 1)λ′ +%λξ ′)2 − 2%λ(p + 2)(pz′ + λ′ξ ′);

if % > 0 then θ2 := −((p+1)λ′+%λξ ′)+
√
%

%λ(p+2) end if;
(A2) One of the following exhaustive cases occurs:

(A2a) [% � 0 or (% > 0 and θ2 � 0)], that is z(θ) is increasing for θ � 0.
Then x := x′ and ξ̃ := ξ ′ + supOR;

(A2b) [% > 0 and θ2 > 0], that is z(θ) is decreasing for θ ∈ [θ1, θ2] and
increasing elsewhere.
If θ2 � θm

then x := x′ + θ2%x and ξ̃ := ξ ′ + supOR
else if θ2 � supOR and UB � z(θ2)

then x := x′ and ξ̃ := ξ ′ + supOR;
else x := x′ + θm%x and ξ̃ := ξ ′ + θm

end if
end if. �

Case B: p < −2
(B1) Compute % := ((p + 1)λ′ +%λξ ′)2 − 2%λ(p + 2)(pz′ + λ′ξ ′);

if % > 0
then θ1 := −((p+1)λ′+%λξ ′)−

√
%

%λ(p+2) ;
if θ1 > 0

then x := x′ + min{θm, θ1}%x;
if f (x) < UB then x∗ := x; UB := f (x) end if

end if
end if;
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(B2) One of the following exhaustive cases occurs:
(B2a) [supOR = +∞ and UB � 0]. Then x := x′ and ξ̃ := +∞;
(B2b) [supOR = +∞ and UB > 0]

If supFR = +∞
then unbounded:= true and Inf _V al := 0
else x := x′ + (supFR)%x; ξ̃ := ξ ′ + supFR

end if;
(B2c) [supOR < +∞]. Then x := x′;

if z(supOR) � UB
then ξ̃ := ξ ′ + supOR else ξ̃ := ξ ′ + supFR

end if; �
Note, finally, that in the case p = −2 the derivative of z(θ) is

dz

dθ
(θ) = (

ξ ′ + θ)−3 [
(%λξ

′ − λ′)θ + (λ′ξ ′ − 2z′)
]

Case C: p = −2
(C1) Compute α1 := %λξ ′ − λ′ and α0 := λ′ξ ′ − 2z′;
(C2) One of the following exhaustive cases occurs:

(C2a) [(α0 > 0 and α1 � 0) or (α0 = 0 and α1 > 0)].
Then x := x′ and ξ̃ := ξ ′ + supOR;

(C2b) [(α0 � 0 and α1 < 0) or (α0 < 0 and α1 � 0)].
If UB � 1

2%λ

then x := x′ and ξ̃ := ξ ′ + supOR
else if θm = +∞

then unbounded:= true and Inf _V al := 1
2%λ;

else x := x′ + θm%x and ξ̃ := ξ ′ + θm
end if

end if;
(C2c) [α0 < 0 and α1 > 0].

Compute θ̂ := −α0
α1

;

if supOR < θ̂
then x := x′ + θm%x and ξ̃ := ξ ′ + θm
else if UB � z(θ̂)

then x := x′ and ξ̃ := ξ ′ + supOR;
else if supFR > θ̂

then x := x′ + θ̂%x and ξ̃ := ξ ′ + supOR
else x := x′ + (supFR)%x and ξ̃ := ξ ′ + supFR

end if
end if

end if. �
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5.3. CORRECTNESS AND FINITENESS

The correctness of the proposed algorithm follows since all the feasible levels are
scanned and the optimal solution, if it exists, is also an optimal level solution.

It remains to verify the convergence (finiteness), that is to say that the procedure
stops after a finite number of steps. First note that, at every iterative step of the
proposed algorithm, the set of binding constraints changes; note also that the level
is increased from ξ ′ to ξ̃ so that it is not possible to obtain again an already used
set of binding constraints; the convergence then follows since:

− we have a finite number of possible sets of binding constraints,
− the algorithm detects the infimum value of f recognizing a feasible extreme

ray of optimal level solutions.

In particular, let us note that at every iterative step at least one used constraint is
deleted and some new constraints may be added:

− if ξ̃ := ξ ′ + supFR , supFR � supOR, then one constraint is deleted and one
new constraint is added,

− if ξ̃ := ξ ′ + supOR, supOR < supFR , then at least one constraint is deleted
and no new constraint is added,

− if ξ̃ := ξ ′ + supOR, supFR < supOR, then at least one constraint is deleted
and some new constraints may be added.

REMARK 5.1. It is worth comparing the algorithm proposed in this paper with
the one (which we will refer to as KK-algorithm) studied in [16] and related to
convex multiplicative programs.

In the particular case p /∈]0, 1[, X bounded and f (x) � 0 ∀x ∈ X, problem
P is a special case of the problems studied in [16] and hence can be solved with
KK-algorithm.

Note that KK-algorithm is based on the solution of the following master prob-
lem:

Kξ :

min ξ

(
1

2
xTQx + qT x + q0

)
+ 1
ξ

(
dT x + d0

)p
x ∈ X, ξ > 0

by means of a branch-and-bound approach. As a consequence, the algorithm pro-
posed in this paper is different since:

− it is based on simplex-like steps, while KK-algorithm uses a branch-and-
bound scheme,

− Pξ is a strictly convex quadratic problem ∀p ∈ R, while Kξ is convex but
not necessarily quadratic (it is quadratic just for p = 0, 1, 2),
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Recall finally that if 0 < p � 1 or Xneg �= ∅ or X is unbounded, KK-algorithm
cannot be used to solve problem P .

5.4. EXAMPLES

In this section we show how the proposed algorithm can be used to solve the
following problems:

 inf f (x) =
(

1
2 [x1, x2]

[
3 1
1 2

][
x1

x2

]
+[−2, 1]

[
x1

x2

]
−4

)
(x1+2x2+1)p

(1) x1 � 0 , (2) x2 � 0 , (3) x1 − x2 � −2 , (4) − x1 + 2x2 � −4

where p = 3,−3,−2 (for the sake of simplicity we will not use the stopping
criteria in step 2c)). The parametric constraint results to be:

(p) x1 + 2x2 + 1 = ξ ′ , ξ ′ ∈ R.

We first have to consider the following preliminary linear programs:{
inf / sup x1 + 2x2 + 1
x1 � 0 , x2 � 0 , x1 − x2 � −2 , −x1 + 2x2 � −4

the optimal solution of the minimum problem is (0, 0), hence ξmin = 1; the max-
imum problem is unbounded, hence ξmax = +∞.

EXAMPLE 5.1. (Case p = 3). The following steps are obtained:
(1) ξ ′ := ξmin = 1; x′ := (0, 0);UB := f (0, 0) = −4; x∗ := (0, 0); unbounded:=
f alse; stop:= f alse;

(2) β = {(2), (p)}; µ′ := 5, λ′ := −2, %x := (1, 0), %µ := −5, %λ := 3,
supFR := 4, supOR := 1; θm := 1; % := 445; θ2 := 1.73966;
◦ in the moving step case A2b) occurs with θ2 > supOR = θm;
◦ x := (0, 0)+ 1(1, 0) = (1, 0); ξ̃ := 1 + 1 = 2;
◦ f (x) = −36 < UB hence x∗ := (1, 0) and UB := −36;
◦ ξ ′ := 2; γ = 1 < 4 = supFR hence x′ := (0, 0)+ 1(1, 0) = (1, 0);

(3) β = {(p)}; λ′ := 1, %x := (0, 1
2), %λ := 1

2 , supFR := 6, supOR := +∞;
θm := 6; % := 82.5; θ2 := 1.63318;
◦ in the moving step case A2b) occurs with θ2 < θm;
◦ x := (1, 0)+ θ2(0, 1

2) = (1, 0.8166) and ξ̃ := ξ ′ + supOR = +∞;
◦ f (x) = −105.5 < UB hence x∗ := (1, 0.8166) and UB := −105.5;
◦ ξ̃ � ξmax hence stop:= true;

(4) x∗ := (1, 0.8166) is the optimal solution with f (x∗) = −105.5. �
EXAMPLE 5.2. (Case p = −3). The following steps are obtained:
(1) ξ ′ := ξmin = 1; x′ := (0, 0);UB := f (0, 0) = −4; x∗ := (0, 0); unbounded:=
f alse; stop:= f alse;
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(2) β = {(2), (p)}; µ′ := 5, λ′ := −2, %x := (1, 0), %µ := −5, %λ := 3,
supFR := 4, supOR := 1; θm := 1; % := 109; θ1 := −1.146768;
◦ in the moving step case B2c) occurs;
◦ x := x′ = (0, 0); z(supOR) = −9

16 > UB = −4 hence ξ̃ := ξ ′+supOR = 2;
◦ f (x) � UB hence x∗ and UB are not updated;
◦ ξ ′ := 2; γ = 1 < 4 = supFR hence x′ := (0, 0)+ 1(1, 0) = (1, 0);

(3) β = {(p)}; λ′ := 1, %x := (0, 1
2), %λ := 1

2 , supFR := 6, supOR := +∞;
θm := 6; % := 16.5; θ1 := −10.124038;
◦ in the moving step case B2a) occurs;
◦ x := x′ = (1, 0) and ξ̃ := +∞;
◦ f (x) � UB hence x∗ and UB are not updated;
◦ ξ̃ � ξmax hence stop:= true;

(4) x∗ := (0, 0) is the optimal solution with f (x∗) = −4. �
EXAMPLE 5.3. (Case p = −2). The following steps are obtained:
(1) ξ ′ := ξmin = 1; x′ := (0, 0);UB := f (0, 0) = −4; x∗ := (0, 0); unbounded:=
f alse; stop:= f alse;

(2) β = {(2), (p)}; µ′ := 5, λ′ := −2, %x := (1, 0), %µ := −5, %λ := 3,
supFR := 4, supOR := 1; θm := 1; z′ := −4; α0 := 6; α1 := 5;
◦ in the moving step case C2a) occurs;
◦ x := x′ = (0, 0); ξ̃ := ξ ′ + supOR = 2;
◦ f (x) � UB hence x∗ and UB are not updated;
◦ ξ ′ := 2; γ = 1 < 4 = supFR hence x′ := (0, 0)+ 1(1, 0) = (1, 0);

(3) β = {(p)}; λ′ := 1, %x := (0, 1
2), %λ := 1

2 , supFR := 6, supOR := +∞;
θm := 6; z′ := −9

2 ; α0 := 11; α1 := 0;
◦ in the moving step case C2a) occurs;
◦ x := x′ = (1, 0) and ξ̃ := ξ ′ + supOR = +∞;
◦ f (x) � UB hence x∗ and UB are not updated;
◦ ξ̃ � ξmax hence stop:= true;

(4) x∗ := (0, 0) is the optimal solution with f (x∗) = −4. �
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